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ABSTRACT

Computations of cosmic-ray transport

based upon finite-difference methods

are afflicted by instabilities, inac-

curacies, and artifacts. To avoid

these problems, we have developed a

Monte Carlo formulation which is

closely related not only to the finite-

difference formulation, but also to the

underlying physics of transport phenom-

ena. Implementations of this approach

are currently running on the Massively

Parallel Processor at Goddard Space

Flight Center, whose enormous computing

power overwhelms the poor statistical

accuracy that usually limits the use of

stochastic methods. In a Monte Carlo

simulation of rectilinear transport,

the coherent and diffusive effects that

appeared are in good quantitative

agreement with both finite-difference

and analytic calculations.

Keywords:

medium,

transport

cosmic-rays, interplanetary

magnetic fields, particle

INTRODUCTION

The diffusion idealization, which has

been almost universally invoked in

discussions of cosmic-ray transport, is

easy to treat analytically. However,

many observed phenomena give clear evi-

dence for non-diffusive effects. One

example is the so-called "scatter free"

propagation of kilovolt solar electrons

(Ref. I), which is inconsistent with

diffusion, but which can readily be

interpreted in terms of a coherent mode

of propagation. This mode is novel,

but it is just a manifestation in a

dynamic situation of non-diffusive

effects similar to those considered in

the steady-state by classical transport

theory (Ref. 2). Although these

effects have been described analyti-

cally in References 3 and 4, the theory

is very complicated. Consequently,

there is a need for reliable numerical

computations which bypass these com-

plexities and yield concrete results

suitable for comparison with observa-

tions. This paper explores such

computations based on the well-known

Monte Carlo method and compares them to

computations based upon finite-

difference methods. To limit the

number of parameters, and to focus the

discussion on computational methods,

the present discussion is limited to

the case of rectilinear one-dimensional

propagation of cosmic-rays along a

uniform magnetic guiding field on which

are superimposed random fields. This

leaves out the effects of adiabatic

focusing by non uniform guiding fields

and of convective motion of the back-

ground medium, which are very important

in the interplanetary context, but it

includes two other essential aspects of

charged particle transport. These are

a strong inhibition of transport per-

pendicular to the guiding field and a

pronounced anisotropy of the pitch-

angle scattering by random fields.

Finally, note that the magnetic fields

are visualized as static, which means
that the velocities of individual

particles are constant, and that there

is no interaction among particles in

the extremely tenuous distribution of

cosmic-rays. This situation differs

from those considered by plasma

physics, but it is closely analogous to

those treated by classical transport

theory.
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TRANSPORT EQUATIONS

Under the circumstances outlined above,

particle transport is described by

_f _f _ _f

+ = (1)

in which f is particle density in phase

space, _ is the cosine of the pitch-

angle measured with respect to the

guiding field, and z is distance paral-

lel to the guiding field. The variable

s -- Vt, where V is particle velocity,

plays the role of a temporal parameter.

The Fokker-Planck coefficient of pitch-

angle scattering is given by

(3/2X) q-1
= (2-q)(4-q) (l-u2)l_l ' (2)

where I is the mean free path, and q is

an index that measures the anisotropy

of scattering (Ref. 5).

In the discrete formulation, the con-

tinuous variables are replaced by a

three-dimensional grid whose spacings

are Az, A_, and As = VAt, and the

derivatives appearing in equation (i)

are replaced by their finite-difference

analogs. These replacements lead to

the difference equation

Af = PM+_(fM+I,Z - fM,Z)

+ Pm_i(fM,Z - fM_I,Z )

+ _M(M,Z_I - fM,Z ), (3)

which gives the change in the distribu-

tion function during a temporal incre-

ment As, and which can readily be

solved by standard numerical methods.

In the Monte Carlo formulation, the

random history of a large number of

particles is followed under the assump-

tion that the coefficients PM_/o
appearing in equation (3) can be inter _

preted as probabilities that _ will

change by ±A_ in each time step. In

this formulation, the particles move a

distance R AS in each step. This

slight difference in the evolution of z

from that described by the finite-

difference formulation, has a signifi-

cant effect that will be discussed

below.

In Figure I, the transition probabili-

ties are plotted as a function of _ for

two different assumptions about the

anisotropy of scattering. Both curves

refer to the same mean free path, I =

480. The square symbols describe

strongly anisotropic scattering (q =

1.8) similar to that occurring in

interplanetary space. Evidently, the

scattering near _ = 0, which is the

boundary between forward (_ > 0) and

backward (_ < 0) hemispheres, is much

weaker than that occurring within each

hemisphere. Consequently, this

boundary acts as a physically signifi-

cant barrier which particles find

difficult to penetrate. In contrast,

the circular symbols, which refer to

isotropic scattering (q = 1.0) similar

to that occurring in molecular colli-

sions or neutron diffusion, describe

relatively weak and nearly uniform

scattering with no feature at _ = 0.
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Figure I. Scattering probabilities for

= 480 plotted as a function of pitch-

angle cosine. The square points for

anisotropic scattering define a curve

that is qualitatively different from

the one defined for classical isotropic

scattering by circular points.
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THE ALGORITHM

To implement the Monte Carlo scheme

outlined above, each particle was

assigned an integer distance and an

index corresponding to p that lies

between 0 and 7. Because these

parameters occupy only three bytes,

there was plenty of storage for several

parallel arrays of particles. Conse-

quently, the results given below are

based on 31 arrays which contained 31 *

16384 = 507904 particles. Their fate

was determined by a single parallel

array of random integers (ranging from

-32767 to +32767) that was rotated at

each temporal step relative to the

fixed arrays of particle data, and

updated every 31 steps. To implement

changes in the pltch-angle cosine, 7

positive integers were chosen in such a

way that the probabilities of the

current random numbers being larger

than this integer are those given by

Figure I. Then the angular index was

incremented for those particles whose

current random integer was positive and

greater than the appropriate proba-

bility integer, and decremented for

those whose random integer was negative

and less than the probability integer

with its sign reversed. This approach

satisfies the basic requirement that

the probabilities of incrementing,

decrementing and leaving unchanged the

pitch-angle must add to unity. After

the pitch-angles had been updated, each

partlcle_s distance was changed

accordingly. When the desired number

of temporal steps had been carried out,

particles were binned into an array

according to distance and pltch-angle.

ISOTROPIC INJECTION

Results obtained from the MPP for

isotroplc injection of particles

uniformly distributed over pitch-angles

are presented in Figure 2 as plots

versus distance of the total number of

particles in each of 50 bins. Thls sum

over pltch-angles is a measure of the

isotroplc particle density. Because

the total number of particles was
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Figure 2. Density profiles shortly

after an isotropic injection. The

profile for isotropic scattering is

featureless, while that for anlsotropic

scattering exhibits two prominent

coherent pulses.

large, statistical errors are small

and, consequently, are not shown

explicitly. However, slight irregu-

larities in some parts of the curves

given an indication of their magnitude.

In Figure 2, the darker curve refers to

anisotropic scattering (square symbols

in Flg. i), while the lighter one

refers to classical isotropic scat-

terlng (circular symbols). These

density profiles describe a situation

very shortly after injection when the

particles have had tlme to move a

maximum distance of only one mean free

path. The former curve exhibits two

peaks, which are completey absent from

the latter one. Qualitatively, thls

manifestation of the coherent mode

appears because equal numbers of

particles become nearly uniformly

distributed in each hemisphere, while

very few particles penetrate from one

hemisphere to the other through the

region of weak scattering near p = 0.

Particles that stay together in each

hemisphere, move wlth nearly the same

velocity parallel to the field, but

statistical fluctuations of individual

velocities give rise to a peak centered

around the average displacement. Such

features are designated as coherent
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pulses. There are two of them in

Figure 2 because the injection was

symmetrical.

COIIERENT MODE

A detailed analysis (Ref. 3) predicts

that the coherent pulses discussed

above form a moving Gaussian density

profile given by

2
(z-V,t)

Noexp {-4-_, t }

F = I/2 ' (4)

(4_D,t)

Consequently, to bring out these

aspects more clearly, this section will

focus on highly collimated injection

into a region of anisotropic scatter-

ing. More specifically, it will deal

with injection of particles in the

forward hemisphere at a single value

= 0.6. Figure 3 shows a density

profile obtained under these circum-

stances, but with all other conditions

the same as in Figure 2. Evidently,

the profile is very sensitive to

initial conditions, for only one

coherent pulse appears, and, in place

of the second pulse, it is accompanied

by a broad feature that is designated
as the diffusive wake.

where V, is a characteristic velocity,

which is close to half the particle

velocity, and D, is the coefficient of

dispersion, which describes the broad-

ening that arises from statistical
fluctuations of individual velocities.

Although the isotropic injection of

Figure 2 is the most natural choice of
initial conditions, it obscures certain

important aspects of the coherent mode.
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Figure 3. Density profile after a

collimated injection, with all other

conditions the same as in Figure 2.

Evidently, profiles depend sensitively

upon conditions at injection. The

dotted curve, derived from a finite-

difference calculation, is in good, but

not perfect agreement with the Monte

Carlo results.

The dotted curve gives the result of a

finite-difference computation based on

Equation 3. The overall agreement is

excellent, but there is a slight

displacement of the coherent peaks, and

the dotted peak is slightly broader

than the solid one. The first of these

discrepancies is a trivial artifact

arising from imperfections in the

binning, but the second arises from an

important difference between the two

computations. More specifically, the

finite-difference implementation leads

to a dispersive effect which can be

described by

D# =%V(A-- ,
(5)

and the total dispersion is a super-

position of the physical effect

described by D, and the numerical

artifact described by D#. In the
present example, the condition that

ensures that physics dominates,

D, > D#, is met, for D, = 4D#, but the
numerical dispersion is large enough to

account for the slight discrepancy

between the peaks in Figure 3. To

confirm this interpretation, a finite-

difference calculation was performed

with D, = D and the expected further
broadening _f the coherent pulse was

seen. These details are significant,

for they illustrate that the Monte
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Carlo method, by virtue of the differ-

ence mentioned above in the evolution

of z, is relatively free of the arti-

facts which plague ftnite-dlfference

calculations. (See Ref. 6 for a

discussion of published work that has

been affected by such problems.)

Numerical dispersion is an especially

insidious artifact, for it leads to

results that seem plausible, but are

quantitatively in error.

ANGULAR DISTRIBUTIONS

To bring out additional features of the

coherent mode, Figure 4 shows further

results from the anisotropic injection

that was discussed above. Here, parti-

cle density has been averaged sepa-

rately over the forward and backward

hemispheres. A comparison of the two

curves reveals that particles in the

pulse are overwhelmingly collimated in
the forward direction while those in

the wake are predominantly collimated

backward. This behavior suggests that

the wake can he interpreted as parti-

cles scattered out of the pulse which

subsequently move coherently away from

it in the backward direction.
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Figure 4. Densities in the forward and

backward hemispheres under the same

conditions as in Figure 3. The

coherent pulse contains particles

moving forward. It is accompanied by a

broad wake of particles moving
backward.

Detailed angular distributions tabula-

ted at four points indicated on Figure

4, and normalized to the same total

number of particles, are presented in

Figure 5. The distribution at the peak

of the pulse (Curve B, circular points)

is essentially a mirror image of the

one at the center of the wake (Curve C,

square points). Both describe near

isotropy in one hemisphere associated

with nearly zero intensity in the

other. This distribution, which is

characteristic of the coherent mode,

adds weight to the interpretation

outlined above.

On the fringes of the density profile,

at points A and D, angular distribu-

tions (triangular points) are highly

collimated in the forward and backward

directions, respectively. In the

interplanetary context, the fringes

would correspond to the the very first

particles to arrive in a solar event,

which are particularly difficult to

describe theoretically, but which are

very important in connection with

accurate timing of events on the sun.

On the MPP, Monte Carlo methods, can

give a useful description of this phase

of solar events, but statistical fluc-

tuations limit the applicability of the

method on less powerful computers.
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Figure 5. Normalized angular distribu-

tions at locations indicated in Figure

4. These distributions exhibit a

remarkable mirror symmetry.
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THE DIFFUSION LIMIT

Eventually, scattering destroys the

strong anisotroples of the coherent

mode, and the featureless wake becomes

dominant. In this regime, where the

familiar theory of diffusion is

applicable, the density profile is

described by a Gausslan whose width is

controlled by the coefficient of

diffusion D = k V/3 (Ref. 7). Figure 6

shows a profile computed by the MPP in

this regime for Vt = 64 * k (solid

curve). Evidently, this profile is in

very good agreement with the dotted

curve which is based upon diffusion

theory.
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Figure 6. Density profiles in the

diffusion regime. Monte Carlo results

are in very good agreement with the

dotted Gaussian derived from diffusion

theory.

CONCLUSIONS

Results obtained from the MPP with the

aid of Monte Carlo methods are equiva-

lent in every detail to those based

upon careful use of more traditional

methods, but they are less subject to

error and are closer to the physics.
These characteristics offer tremendous

advantages in the investigation of

exotic transport regimes for which no

theoretical description is available.

In particular, the formulation of

problems in which particles gain or

lose energy leads to prohibitively

large conventional computations, but

their Monte Carlo versions are not sig-

nificantly more complicated than the

one described here. We intend to ex-

ploit these advantages in the investi-

gation of two such problems: Adiabatic

deceleration of cosmic-rays due to

expansion of the solar-wind, and the

loss of energy by electrons in radio

sources due to synchrotron radiation.
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